If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(2x)^2=45^2
We move all terms to the left:
x^2+(2x)^2-(45^2)=0
We add all the numbers together, and all the variables
3x^2-2025=0
a = 3; b = 0; c = -2025;
Δ = b2-4ac
Δ = 02-4·3·(-2025)
Δ = 24300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24300}=\sqrt{8100*3}=\sqrt{8100}*\sqrt{3}=90\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{3}}{2*3}=\frac{0-90\sqrt{3}}{6} =-\frac{90\sqrt{3}}{6} =-15\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{3}}{2*3}=\frac{0+90\sqrt{3}}{6} =\frac{90\sqrt{3}}{6} =15\sqrt{3} $
| 8-8y=22 | | 3742+4t=6342 | | 3a/7=3 | | 14-3x=5-8x | | 11x-12-(4x+1)=(7x-13) | | -3x+7=7x-103 | | x2=9x–14 | | -6w-12=-108 | | -7(n+3)-2n=-3(n-3) | | (15x)=180 | | 4y=21+y | | 2¹/₂x=10 | | -64=-t | | 7(-7-2a)-4a=-3+2(1-3a) | | 8(x-1)=#x+ | | 44.1t-4.9t2=0 | | 5(5c-1)-5=22c+2 | | -6x+8x=42 | | -5=n/12 | | (7+2x)/3=5 | | 9x-4x-32=-34 | | -5(a+8)=-5(1+8a) | | 80=(2x+6) | | ²1/2x=10 | | 11(12x-1)^3=2401 | | x=1/150 | | 17=4p=67 | | 15=2(x+4)+-3 | | (2x+4)+(x+2)=3(x-1)+7 | | 80°=(2x+6)° | | |3r+3|=12 | | 9x-9 = -45 |